AXISYMMETRIC PARABOLIC LOADING
OF ANISOTROPIC HALFSPACE

By George Gazetas,' M. ASCE

INTRODUCTION

In a companion technical paper (2), the writer studied the effect of soil
cross-anisotropy on stress and displacement distributions in a homogeneous elastic
halfspace subjected to normal axisymmetric surface loading distributed in the
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form of a convex parabola of revolution. The study was based on an analytical
solution which was only briefly outlined in that paper (2). This technical note:

1. Presents the complete formulation and solution of that boundary value
problem (hereafter referred to as ‘frictionless’ loading case).

2. Outlines an analytical solution to the problem of ‘adhesive’ parabolic loading
of a cross-anisotropic half-space; such a loading may be appropriate in case
of a raft foundation that is flexible in bending but has a very large in-plane
stiffness thus preventing any horizontal displacements from occurring within
the contact area.

3. Graphically shows the effect of soil anisotropy on vertical and radial stresses
and displacements under both ‘frictionless’ and ‘adhesive’ loading conditions.

GeneraL SoruTion For FrictionLess ParaBoLic LoApiNG

A cross-anisotropic medium with a vertical axis of material symmetry is
characterized by five independent elastic material constants: a vertical and a
horizontal Young’s modulus, E, and E,,, a shear modulus on vertical planes,
G .., a Poisson’s ratio for horizontal due to vertical strain, v,,,, and a Poisson’s
ratio for horizontal due to horizontal strain, v, (2,6). Under conditions of
axial symmetry, and in the absence of body forces and torsional deformations,
it has been shown (6) that the distribution of displacements and stresses can

be expressed in terms of a potential function, & = ®(r,z), whose zero-order
Hankel transform is

ac

d(,2) = X r®(r ) (ERdr .. ¢))

o

in which J_ = the first-kind, zero-order Bessel function, and this satisfies the
following ordinary differential equation:

d’ d’ -
(df — 5 gz) (d22 - s§§2) DE,2Z)=0 . . .. Q)
The general solution of Eq. 2 takes the form:
D, z)=A@E) exp(—£5,2) + B exp(—£552) « v v v i 3)

in which s, and s, = material constants given in terms of E,,, E,, v,,, V4,
and G,, in Appendix I, while the constants of integration, A4 (§) and B (£),
are evaluated from the boundary conditions of the problem. At the surface,
z = o, the shear stresses, 7,,, must be everywhere zero (frictionless loading),
while the normal stresses, o,, are equal to the applied normal tractions that
are distributed as a convex parabola of revolution: p = p, (1 — p?), with p
= r/R = 1. If we introduce the zero-order Hankel transform, o, (¢, 2) of o,,
and the first-order Hankel transform, 7,, (¢, z) of 7,,, the two boundary conditions
can be written as

TLE0) =B (E) o o e @)

T.(50)=0 . . e e e e ®))
in which p(§) = the zero-order Hankel transform of p(p). The definition of
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the first-order transform follows from Eq. 4 if J_ changes to J,, i.e., to the
first-order Bessel function. &, and 7,, can be evaluated in terms of ® by means
of the well known expressions, given in Sneddon (8).

By noticing that

R

_ 2 J2(§R)
p@) = p.(1=p)rJ,(§r)dr=2p, g e (6)

o

Egs. 4 and 5 reduce to a system of two algebraic equations from which the
two integration constants, 4 (§) and B(§), are readily computed. The final
expression for @ is

_ Vg [q,exp (~§5,2) — g, exp (£ 5,2)] L,ER)
dE,z)=2p, . w54 B @)
(s, — s,)(ac — g) <

in whichg, =1 —as?, andi =1, 2.

It is now evident that &, and 7, can be expressed as functions of ¢ and
z only. Similarly, the Hankel transforms of all the other stress and displacement
components, &,, 6o, W and %, can also be evaluated in terms of £ and z by
considering the appropriate transforms of both sides of Eq. 1 and using Eq.
7. To compute stresses and displacements as functions of z and r it is then
sufficient to apply the inverse Hankel transformations. An example:

w(r,z)=§ Ew(, 2) J,(Er) dE; u(r,z)=§ Eu,z)J,(kr)de . .. .. (8)

for the vertical and horizontal displacements, respectively, and similarly for
the stress components. With the additional notation:

oo

I, (x)= S Jok)J, kp)k™™e™dk .. ... . 9)

evaluation of the Eq. 8 type integrals leads to the following final results:

2p,RV g
W= (9. 6,10,(0,) —got, Toy(A D] -« o v o oo e e (10)
(s, — s,)(ac — g)

2poR\/;<Ga +f)

VH

- _ —q, s I, O\l . .. ... 1
u s, = s j(ae =) (g 5.1, () —q,5,1,(N))] (1)
2
o, = I Lo N = S5 T ND] o o e e e (12)
S =5
= 2P, [ I, (A I, (A
U'_(S.—sz)\/_g_ s Loy (M) — 5,15, (M)
+ v””T_ (5,421, 0) = 5,9, 1,5 (xz)]] .................. (13)
2p,

i FANCN I TR0 ) E R (14)
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b

Z
in which A=—5 A=hs, (=12

and a, b, ¢, g, f, and ¢, (i = 1, 2) = material constants given in Appendix
I. The numerical evaluation of the so-called Lipschitz-Hankel type integrals,
I,, (Eq. 9), has been analyzed in Ref. 1. At the surface, z = o, and along
the vertical Oz-axis, p = o, these integrals can be evaluated analytically and
the resulting simple expressions for u and w at z = o, and o,, o,, and 7

at p = o have been presented in a companion paper by the writer (2). -

GeNeRrAL SoLuTion For ApHEsIVE ParaBoLic Loaping

Even the most flexible (in bending) raft foundations possess a significant
in-plane stiffness. Thus, horizontal shear tractions are generated at the contact
surface in response to the tendency of the soil surface to move horizontally
(e.g., Eq. 11). If no slippage occurs between foundation and soil (‘adhesive’
contact), then no lateral displacements of the soil surface take place within
the loaded area. Note that Schiffman (7), Hooper (4), and Keer (5) studied
the response of an elastic isotropic halfspace to axisymmetric uniform, parabolic,
and rigid-punch-type of ‘adhesive’ loading, respectively. In this note, the effect
of ‘adhesiveness’ is evaluated for a cross-anisotropic, parabolically loaded
medium.

In order to obtain a solution for this case, where no horizontal surface
displacements are permitted at the soil foundation interface, it is sufficient to
superpose stress and displacement components resulting from the ‘frictionless’
parabolic loading (Egs. 10-14) with those generated from the following boundary
conditions:

\/E( ? +f)(1+as,s2)

+R
u*(p) =2 e p2—=p%) o0 =p=1...(6
4 (ac — g)
O¥(P)=0 O0=SP=00 . . L Lt e e e e e e (17)
TEP)=0 1<p<oo .. e e e (18)

u* (p) is equal in magnitude but opposite in sign to u(p,0), obtained from
Eq. 1l for z = 0, 0 = p = | (see also Eq. 9b of the companion paper (2)).
These new boundary conditions are of a mixed nature, i.e., unlike Egs. 8 of
Ref. 2, both stresses and displacements are prescribed at the boundary. Following
similar steps with those described in the preceding section for ‘frictionless’
loading, the problem reduces to a set of dual-integral equations of the type
solved by Busbridge (see Ref. 8). The final results of the analysis are given
here for w* (r,z) and o* (r, z) only:

. 2V 2 R l+as s, [ K.
w* = - sy, K,
3Vr 0 Vg sisi(s—sac—g) e

=S PEa K Aa)l 55 ks i v s s a o nw e s s m s ks By ow oo oo (19)
2V 2p, l1+as,s,

g, = 3\/; \/E(S,Z—sg)(ac—g) .7, K;(\))
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S 2N . (. [ (20)
1

inwhich y,=gs’—1, y,=c—gs}, t,= +fs3 i=1,2.... Q@D
VH

K,(x)=4 S Js,; (k)T (kp)e “ k"> dk

+ S Ty (kpye k" 2dk . . .. .. . i s e (22)

K, is numerically evaluated using the results of Ref. 1, and the full solution
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FIG. 1.—Surface Settlement Profile of Cross-Anisotropic Halfspace: (a) Frictionless
Loading; (b) Adhesive Loading
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FIG. 2.—Distribution of Vertical Normal Stress Under Center of Load (r = 0): (a)
Frictionless Loading; (b) Adhesive Loading
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to the parabolic ‘adhesive’ loading problem may then be obtained by superimposing
the solutions for parabolic ‘frictionless’ loading (Eqs. 10-14), and for specified
horizontal displacements given by Eq. 16 (Egs. 19 and 20).

ResuLts aND CONCLUSIONS

Figs. 1-3 show the effect of soil cross-anisotropy on surface settlement, w(p),
vertical stress along the central axis, o, (\), and radial stress across the surface,
a,(p), under both ‘frictionless’ and ‘adhesive’ loading conditions, for a material
with zero Poisson’s ratios. Such a medium may adequately represent actual
soils loaded under drained conditions [e.g., London clay (3)]. Also shown for
comparison in these figures (in dotted lines) is the response of an incompressible
(i.e., undrained) isotropic medium.
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FIG. 3.—Distribution of Radial Normal Stress along Surface (z = 0): (a) Frictionless
Loading; (b) Adhesive Loading

It is immediately apparent that for undrained soils the solutions for ‘adhesive’
and “frictionless’ contact coincide. This is hardly surprising in view of the fact
that (any) undrained ‘frictionless’ normal load on a halfspace—isotropic or
anisotropic—produces no radial horizontal displacements at the surface (2).
However, in drained soils, interfacial shear tractions develop between the soil
and a rough flexible footing as the latter prevents horizontal movements of
the soil in the contact area. As a result, relative to the corresponding ‘frictionless’
loading, ‘adhesive’ loading of both isotropic and anisotropic media: (1) Substan-
tially reduces both total and differential settlements within the loaded region;
(2) reduces the concentration of vertical stresses, o,, along the central axis
at shallow depths; and (3) changes drastically the distribution along the r-axis
of the radial surface stresses, o,. Notice, nevertheless, that these differences
between the two types of loading diminish at short distances away from the
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contact area, especailly in soils with small values of the n ratio. This is a
consequence of the self-equilibrating nature of the shear tractions imposed by
the rough foundation, in accordance with Saint-Venant’s principle.

Finally, it is worth emphasizing that the two types of loading considered
here (‘adhesive’ and ‘frictionless’) represent extreme cases of the possible
mechanical behavior of the soil-load interface. A more realistic assumption is
that of a contact obeying Coulomb’s friction law. Such an interface would
allow some slippage to occur thus, leading to stresses and displacements in
between those of the two extreme cases.

ACKNOWLEDGMENT
Financial support by the National Science Foundation is kindly acknowledged.
Appenpix L.—SoiL PARAMETERS a, b, ¢, g, AND f, 5, 5, ¢,

When n = E,/E,, m = G,,/E,, and j = nv>, — 1, then a, b, c, g,
and f are:

a=vy,, , = - :
J J
1 vim =1 a(l = v,, —2nvy,)
c=aq——, g=—— = ;
mj nj nE,v,,
1 a+c= [(@a+c)Y-4g]"?)'"
l,= +f312; S12 = { ......... (23)
VH 28
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